(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
S tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c3
(3) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
z0) →
c(
COND(
odd(
z0),
p(
z0)),
ODD(
z0)) by
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(7) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 6 dangling nodes:
COND(true, 0) → c(COND(false, p(0)), ODD(0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(9) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
We considered the (Usable) Rules:
p(s(z0)) → z0
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [5]
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0)) →
c(
COND(
odd(
s(
z0)),
z0),
ODD(
s(
z0))) by
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(0)) → c1(ODD(s(0)))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1
(17) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(0)) → c1
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c1
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
z0))) →
c(
COND(
odd(
z0),
p(
s(
s(
z0)))),
ODD(
s(
s(
z0)))) by
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(0)) → c1
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c1
(21) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 11 dangling nodes:
COND(true, s(0)) → c1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1
(23) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(COND(false, p(s(s(0)))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(COND(false, p(s(s(0)))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(25) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2, c2
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(COND(x1, x2)) = [5]
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2) = 0
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = [3]
POL(p(x1)) = [3]
POL(s(x1)) = [2]
POL(true) = [5]
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(0))) → c2
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2, c2
(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(0))) → c2
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(COND(x1, x2)) = [1]
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2) = 0
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = [3]
POL(p(x1)) = [3] + [5]x1
POL(s(x1)) = 0
POL(true) = [5]
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2, c2
(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(COND(x1, x2)) = [4] + [4]x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2) = 0
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2, c2
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
0) →
c(
COND(
odd(
0),
0)) by
COND(true, 0) → c(COND(false, 0))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
COND(true, 0) → c(COND(false, 0))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(false, 0))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(0))) → c2
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2, c2
(35) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 3 of 11 dangling nodes:
COND(true, s(0)) → c1(COND(true, 0))
COND(true, s(s(0))) → c2
COND(true, 0) → c(COND(false, 0))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c2
(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
0)) →
c(
COND(
true,
p(
s(
0)))) by
COND(true, s(0)) → c(COND(true, 0))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(0)) → c(COND(true, 0))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(0)) → c(COND(true, 0))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c2
(39) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 8 dangling nodes:
COND(true, s(0)) → c(COND(true, 0))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c2
(41) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0))))) by COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c2
(43) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [2]x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c2
(45) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
ODD(
s(
s(
z0))) →
c3(
ODD(
z0)) by
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c2(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c2, c3
(47) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 7 dangling nodes:
COND(true, s(s(0))) → c2(ODD(s(s(0))))
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(49) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(51) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0)))))) by COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(53) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [4] + [4]x2
POL(ODD(x1)) = [1]
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = [2] + [2]x1
POL(s(x1)) = [2] + x1
POL(true) = [3]
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(55) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(COND(x1, x2)) = [3] + [2]x2 + x22
POL(ODD(x1)) = x1
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = 0
POL(s(x1)) = [1] + x1
POL(true) = 0
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
S tuples:none
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(57) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(58) BOUNDS(O(1), O(1))